HILCIICyYy m
2 Seas Mers Zeeén

European Regional Development Fund

D. 1.5.1. Set of basic low-cost mobile robots using
integrated design methods

INDUSTRY 4.0

ISEN-Lille : Annemarie Kokosy, Gilles
Tagne, Bruno Stefanelli

Université de Lille : Jérémie
Boulanger, Benjamin Mathon

KU Leuven : Philippe Saey, Frederic
Depuydt, Mathieu Troch, Jos De

Brabanter

Overview

T ageTe [V 4T] o HAR T PO PSSP P T TOPORORRTOP
1. Robot control algorithms using MATLAB/SIMUIINKccccieiieiieiiecee e
1.1, BaSiC MOTOI CONTIOl ..ciuiiiiieiieiie ettt s s bbb
0 B 1 - Y [=Toi o) YA ole Yo i o] SRR
1.2.1. SErAIGIT-lINE trAVEl..ce i e s e e s sb e e s saraeeesnee
1.2.2. LiNE FOIIOWET ...ttt sttt sbe e e sb e e bt e e st e e sne e e saree s
1.2.3. ObStacle QVOIAANCEeeieiiieiee ettt st et e st e e e b e sbee e sbee e
1.3. Code generation with MATLAB for LEGO NXTooiiiiiiiieicieee ettt e etree e evee e e 10
1.3.1. SN =] I =T LU TT =T 0 0 1=T L TN 10
1.3.2. FRATUIES .. e 10
1.3.3. S-TUNCLION BIOCK USAZE ...iiiieiiiiiieiiiie ettt ettt et e e s arae e e s e e e e s sanaaeeeas 11
1.3.4. I DUES e aaaaaaaaaens 11
1.3.5. L T 01U N 11
2. SMall robotic dEMONSTIATOrS.iiitiiiieeieeeeeete ettt ettt st et b e b e saeesaeeeeees 15
2.1. ISEN Robot controlled by ArdUiNO.......cuueiieiiieeiiiiie st e s e e s sraee e 15
2.1.1. Description of the robot ... 15
2.1.2. Rapid prototyping using MATLAB/SIMUIINKccceeiiiiieiiiiciee e 16
2.1.3. Robot control algorithmscc.uviiiiee e e 19
2.2. ISEN Robot controlled by Raspberry Pi3oo ittt 20
2.2.1. Description of the robotccuiiiiie e 20
2.2.2. Rapid prototyping using MATLAB/SIMUIINKc.ccoieiieieeiieceeceecee ettt 21
2.2.3. Robot control @lgorithmsc.uviiiiee e e e 22
2.3, Gantry Crane DesCriptioN oo ce e 23
2.3.1 INEFOAUCTION ...ttt st esr e sre e saeesine e 23
2.3.2. Physical construction of the gantry crane.........cccoecvee i, 25
2.3.3. LEGO MiINAStOrmMS NXT ..coveeriiiiieiieeie ettt sttt sre e s sre e e e e 26
2.3.4. Automation of the Santry Crane ... ieciiii e e 30
2.3.5. FUBUI WOTK ..ttt ettt b e sat e st s e et e e sbeesbe e saeesaneeas 34
2.4, LEGO VENICIE .ueeiiieiiieee ettt ettt s st 35
24.1. INEFOAUCTION .ttt s s r e e b e saeesane e 35
2.4.2. Physical construction of the LEGO Vehicle.........cccoocueiieciiiiiecieececee e 35
2.4.3. NXT €XECULION SPEEAuiieiiee ettt ettt e e e e e st e e e e e s e eenebee e e e e e e e ssnbareeeeeeeesennnnenes 36
24.4. Use of LEGO MiINdStorms NXTcc..eiieiieeiienienie ettt st sae e saee e 37
2.45. Automation of the LEGO VEhICIEcooeiriiriiiiieieecceeeeeeeeesee e 38
2.4.6. Communication between the PLC and the NXT bricks.......c.cceevevienieneniciienieeceene 38

2.4.7. N D I oY - -] o TR 40

24.8. FUBUE WOTK ettt ettt ettt st e sbeesbeesaeesane e 41
3. Low-cost hardware connected to industrial NetWOrkscccceveeriiniiniiineeeeee 42
3.1. Small robot controlled by PLC and Raspberry......cccueiiiiiieiiiiiieicrieec et 42
3.1.1. INEFOAUCTION ...ttt st e e st e s bt e e sabeesabeeesanes 42
3.1.2. QU DM NS e 42
3.1.3. Protocols and commuUuNICAtIoNcocuiiiieiiiiieiiieeee e e 43
3.2. Wireless PROFIBUS DP over BIUETOOThcoouiiiiiiiiiieieeeeeeeeeeeeeee e 45
3.2.1. INEFOAUCTION ...t st e st e e st esbe e e sabeesabeeesanes 45
3.2.2. DBVICE .ttt e e s e e e e e e s e e e s e e e e e nreeas 45
3.2.3. <110 o F RN 46
3.2.4. DL A a1 T =Y g =T o) RSP S 46
3.2.5. Example of PROFIBUS DP MESSAZES ...eccecvireeiiiieeeeetieeeeetteeeesteeeeesteeeesenseeesssnseeessnnsenas 46
3.2.6. FUBUNE WOTK ..ttt ettt ettt sttt et e st e st e s bt e e sabeesabaeesnbeesabeeesans 47

Introduction

This report presents the results of work on “integrated design” methods applied to low-cost mobile
robots achieved by the teams from Yncréa Hauts-de-France/ISEN-Lille, KU Leuven and University of
Lille.

In the first section, the methodology to design algorithms to control the robot actuators as well as the
robot trajectory is described and implemented in Simulink. A S-function in Simulink has been
developed to allow the connection of a robotic system as a slave in the PROFIBUS industrial network.
Thanks to that block, it is now possible to connect a robot having a low-cost non-industrial hardware
(for example NXT, Arduino or Raspberry) to an industrial network.

In the second section, 4 different robotic systems are presented. They use different low-cost hardware
board for control: an Arduino, a NXT or a Raspberry Pi3. Each robotic system is controlled by
MATLAB/Simulink using a rapid prototyping methodology. The first two robots run the same algorithm
implemented in Simulink and deployed in their own hardware target in order to illustrate that is
possible, with very few changes, to make ready for use robots having different hardware. This clearly
illustrates flexibility and speed of adaptation, reducing “time to market” for new applications.

The last section describes two systems controlled by a PLC using an Industrial network, Modbus and
PROFIBUS, which creates new opportunities for applications.

1. Robot control algorithms using MATLAB/Simulink

1.1. Basic motor control

The first goal when the aim is to design an autonomous robot, is to ensure the low-level control. It
means that first of all, the robot’s wheels need to keep the desired speed.

In order to ensure it, a controller needs to be design. The key steps to implement a controller are
showed in the following figure

Identify the inputs/outputs/perturbations
Identify the subsystem interactions

Digital model
Differential Equatipns, transfer functions, steady state model

. sensitivity to perturbations

Controllers: P/PI/PID, state space controller
using pole placemeht, ...

Matlab/Simulink, Siemens, ANSYS, ...

pard/PC

Figure 1: Key steps to implement a controller

The small mobile robots mainly use DC motors. To control their speed, a Pl controller should be
designed using MATLAB/Simulink rapid prototyping method.

In order to illustrate how to implement a Pl controller using MATLAB, Simulink, the following
equipment is used:

- DCmotorincluding an encoder TRENZ-24142, 6V, 240mA, ratio: 53, controlled by a PWM
- Motor Driver PMODHBS; the pinout description table is showed below

- An Arduino Uno

- A PCwith MATLAB/Simulink, version 2016b

Pinout Description Table

Pin

Header J1 (pin 1 on the top)

Signal Description
DIR Direction pin
EN Enable pin
SA Sensor A feedback pin
SB Sensor B feedback pin
GND Power Supply Ground
VCC Positive Power Supply (3.3/5V)

Pin

The overall system is depicted in Figure 2.

Header J2 (pin 1 on the bottom)

signal Description
SB Sensor B feedback pin
SA Sensor A feedback pin
GND Power Supply Ground
vcc Positive Power Supply (3.3/5V)
M+ Motor positive pin
M- Motor negative pin

Figure 2: Bench with DC motor speed control using an Arduino Uno

M

-

H-BRIDGE
CIRCUIT M+

GND

n L.
GND
)

PmodHBS block diagram (top-down view)

DC motor
+

Encoder

Motor driver

e

vee|

ono|

s[Oddo6dd

To design a controller, it is necessary to determine a mathematical model of the DC motor and the
driver. Once this model is available, the controller could be designed using Simulink. The simulation
scheme is showed below. The controller should guarantee that the closed loop system reaches the
requested performances.

m

1

}7 >+ | > PID(s)

Pulse

Add PID Controller

Generator

st1
Transfer Fen

Scope

Block Parameters:
PID Controller

This block implements continuous- and discrete-time PID control algorithms and includes advanced features such as
anti-windup, external reset, and signal tracking. You can tune the PID gains automatically using the "Tune..." button
(requires Simulink Control Design).

Controller: IPl v] Form: [Parahel >

Time domain:

@ Continuous-time

(©) Discrete-time

Main | PID Advanced | Data Types | State Attributes
Controller parameters

n

Source: Iinternal ~| = Compensator formula

Proportional (P): 1
1
Integral (I): 1 P+l N

Initial conditions

Source: [internal 'l

Integrator: 0

External reset: Inone ']

["] Ignore reset when linearizing
Q

I\ PID Tuner (untitled/PID Controllel

- Step Plot: Reference tracking

| PID TUNER VIEW
Plant Type: PI Domain —_— g) =
Plant v Form: Parallel | Time - X Siomer Response Time (seconds) 02573~ ﬁ E {.:- ‘@ ‘ P ‘
. ——a— - - 53
4 Inspect) Options Ll Add Piot + Aggressive Transient Behavior Robust 17C | Resst Show o - l—J
Design Parameters X
PLANT CONTROLLER DESIGN TUNING TOOLS ‘ e ‘7‘
& = | Step Plot: Reference tracking l x
£ h Controller Parameters
3
E Step Plot: Reference tracking jlined Block
Pt 1.2 T T T T P 7.3016 1
= Tuned response I 221656 1
1k — — Block response D n/a n/a
N n/a n/a
- -——
-
0.8 - - 4
[} -
k=] -
2 - Performance and Robustness
506 - B
= PR Tuned Block
< - - Rise time 0.199 seconds 2.2 seconds
L - - Settling time 1.07 seconds 3.91 seconds
s Overshoot 104 % 0%
0.2 7 < | [Peak 11 1
rd Gain margin Inf dB @ NaN rad/s Inf dB @ NaN rad/s
4 | | | | | Phase margin 76 deg @ 7.77 rad/s 90 deg @ 1 rad/s
0 . —
0 05 1 15 2 25 Closed-loop stability |Stable Stable
Time (seconds) .
Controller Parameters: P = 7.302, 1 = 2217 M, J ‘ 4|”

Figure 3: PI controller tune in Simulink

1.2. Trajectory control

Once the speed controller designed and implemented, it is now possible to control the robot’s
trajectory. The robot, which need to be controlled, is a non-holonom robot having two motorized
wheels. The robot’s direction is controlled by using the differential speed of the wheels.

The linear and angular speed, v and o, of the robot are calculated using the following equation, where
vr is the speed of the right wheel, vl is the speed of the left wheel and d is the distance between the 2
wheels.

v + v,
V=—-
2

1.2.1. Straight-line travel
In order to move straight the robot, it is necessary to put the same speed to the 2 wheels. As, it is
possible that the two wheels are not controlled in a synchronized way, a supplementary control
needs to be implemented which will reduce the speed difference between the two motors.

The Simulink scheme implementing the straight-line travel algorithm is showed in Figure 4. The

ARDUING
Lt
Fin
FWM
LF—o
sens 1
Consmnt
D,
vie==1
Corsant? ==z
ARDUING
e an
‘Sawratont Gaint PinG
PN
Gainz
(€D
viese 2
‘Speed estmaton Displayt
1

Figure 4: Algorithm of a robot straight-line travel implemented in Simulink

1.2.2. Line follower

If the robot needs to follow a line, it needs to be able to sense the line using
suited sensors. One of those sensors is the IR sensor. Thanks to it, the robot
could distinguishes between two different colours having a contrast good
enough (for example black line on a light blue floor).

The robot needs to have at least 2 IR to be able to know if it is following the
line or it starts to deviate to the left or to the right.

If the robot deviates from the line to the right, it needs to correct it’s direction
to the right. If the robot deviates from the line to the right, it needs to correct
it’s direction by going to the left. More the deviation is important, more the
level of the correction needs to be important too.

In order to implement the line follower algorithm a state machine is used. The finite state machine is
a representation of an event-driven (reactive) system. In an event-driven system, the system responds
to an event by making a transition from one state (mode) to another. This transition occurs if the
condition defining the change is true.

A Stateflow chart is a graphical representation of a finite state machine. States and transitions form
the basic elements of the system.

The Stateflow chart provides aditional capabilities beyond traditional finite state machines, such as:
* Modelling hierarchical states for large scale systems;
* Adding to define decision logic;
* Define orthogonal states to represent systems with parallelism.

Figure 5 shows an example of a flow chart. The system switches from state 0 to state 1 if the condition
of the transition a is satisfied. When it arrives in state 1, the system executes the action 1.

1 Action 1

Action 2

[

Figure 5: Example of a stateflow chart

The line follower algorithm is depicted in Figure 6. The transitions are defined by the data provided
by the IR sensors. The robot has 4 different actions which it can do: go straight, turn left, turn right
and switch off.

qT.IME_FDLLG“ﬁEH_Ih
aniny: LineFower=
Direcicnl=
DrootionZ=

T Y aften|5,sec) | BaEiaight
entry:LefTarue=Oesimnd Spoed
_———= RighiTorque= DesredSpoed L
- 5 ,
- e . . |RighiSeracr==0 A& LeftSersor==0)
Fights A48 Laf: 2 T A
[RightSensos A& LefiSenscr eftSenspr==0 &L RightSenscr=0| FigheSensor==h A5 LafSensor=
s X
FightSenso &4 LeftSensor=f LatSensor=—1 L& RighlSensce
umloft umFight
antry LefiTorque=Desired Spoed- Torqua_ cormeciion [RightSensod==0 A& LetSersor=0) aniry: LefiTerque=Desired Speeds Torqua_corociion
RightTorque=DesiredSpends Torque_comection 2 t i = RightTorque=DesinedSpead- Torque_conmeotion

Figure 6: Line follower algorithm implemented in Simulink

1.2.3. Obstacle avoidance
If the robot needs to be autonomous, it is necessary to ensure a behavior free of collision. To satisfy
this requirement, an obstacle algorithm needs to be implemented in the robot.

The robot needs to know if there are obstacles in its environment, the distance between the obstacles
and itself and their positions. Among the sensors, which can be used to fulfill this task, we could find
the US, IR, lasers and camera. Each sensor has some advantages and drawbacks in terms of precision,
needs for data processing and price.

For the algorithm implemented in this report, the IR sensors are used. The robot has 5 IR posed in the
front of the robot. The main state chart has five subsystem each one representing a sensor. The system
switch from one subsystem to another one each 0.1sec. A filter is added to filter the disturbances due
to the ambient light. The IR sensor detects an obstacle when the distance is less than 30 cm. The
number of sensors determines the smoothness of the robot’s movement.

oFF [ON_OFF>0] on ~N
[ON_OFF>0]
LEFTMOST LEFT
entry: Sel2=0 after(0.1,sec) entry: Sel2=0 after(0.1,sec)
Sel1=0 Sel1=1
Sel0=1 Selo=0
left_2=LEFTMOST left_1=LEFT_1 center=CENTER
RIGHTMOST RIGHT
entry: Sel2=1 entry: Sel2=1
sel1=0) Sel1=0
Selo=1 _,_after(0.1,sec) Sel0=0
right_2=RIGHTMOST right_1=RIGHT_1
X /
ARDUINO
—pL1 Left1 P Left1 Motor1 J_I_I_I_
Pin 5
—pL2 Left2 P Left2 PWM1 ARDUING
Motor2 I I I l
—Pp|C ‘ Center P Center ARDUINO Pin6
fcn PWM2
Direction1 J_LI_I.
—»{R1 Right1 »{Right1 .
DIR:2T8|0N1 ARDUIND
—»R2 Right2 »Right2 Bicionz nr
Pin 9
Filter
InfraRed_Motor_Control DIRECTION2
Figure 7: Obstacle avoidance algorithm implemented in Simulink
1.3. Code generation with MATLAB for LEGO NXT

1.3.1. System Requirements
* MATLAB 2016a or higher with Simulink

1.3.2.

e LEGO Mindstorms NXT with Firmware version 1.28

Features

PROFIBUS DP Slave
Supported Baud rates:

9.6 kbps
19.2 kbps
93.75 kbps
187.5 kbps
500 kbps

Supports Sync mode

1.3.3. S-function Block Usage
The complete software stack is written in an S-function Block, which can be imported in a Simulink
Model. S-functions (system-functions) provide a powerful mechanism for extending the capabilities of
the Simulink environment. An S-function is a computer language description of a Simulink block written
in MATLAB, C, C++, or Fortran. C, C++, and Fortran S-functions are compiled as MEX files using the mex
utility (see Build MEX File). As with other MEX files, S-functions are dynamically linked subroutines that
the MATLAB execution engine can automatically load and execute.

S-functions use a special calling syntax called the S-function API that enables you to interact with the
Simulink engine. This interaction is very similar to the interaction that takes place between the engine
and built-in Simulink blocks.

S-functions follow a general form and can accommodate continuous, discrete, and hybrid systems. By
following a set of simple rules, you can implement an algorithm in an S-function and use the S-Function
block to add it to a Simulink model. After you write your S-function and place its name in an S-Function
block (available in the User-Defined Functions block library), you can customize the user interface using
masking (see Block Masks).

If you have Simulink Coder, you can use S-functions with the software. You can also customize the code
generated for S-functions by writing a Target Language Compiler (TLC) file. For more information, see
S-Functions and Code Generation.

In Figure 8 is an example shown of the S-function Block.

> >
P{RJO[F]
BJUJS
SOFTWARE STACK
> >
Figure 8: S-function Block
The S-function for PROFIBUS has 2 Inputs and 2 Outputs.
1.3.4. Inputs
1. Ready for Data Exchange: a boolean that must be True for the Device to go into Data Exchange
mode.

2. 1/0 Input Data as a multi-dimensional matrix.

1.3.5. Outputs
1. PROFIBUS DP Slave State: this output gives the current State of the PROFIBUS Slave Stack:

* 0 =Power On: The Slave is powered on and the program is running and initialising)

* 1 =Waiting for Parameters: initialisation is finished and the Slave now waits for
parameterisation by a Master)

» 2 =Waiting for Configuration: after a Master has parameterised the Slave, the Slave waits
for the 1/0 Configuration.

* 3= Data Exchange: The Slave is fully configured and is sending and receiving its I/O data.

2. 1/0 Output Data as a multi-dimensional matrix.

When invoking a Level-1 MATLAB S-function, the Simulink engine always passes the standard block
parameters, t, x, u, and flag, to the S-function as function arguments. The engine can pass additional
block-specific parameters specified by the user to the S-function. The user specifies the parameters in
the S-function parameters field of the S-Function Block Parameters dialog box (see Passing Parameters
to S-Functions).

If the block dialog specifies additional parameters, the engine passes the parameters to the S-function
as additional function arguments. The additional arguments follow the standard arguments in the S-
function argument list in the order in which the corresponding parameters appear in the block dialog.
You can use this block-specific S-function parameter capability to allow the same S-function to
implement various processing options.

To configure the PROFIBUS S-Function Block right click the block and open ’Block Parameters (S-
function)’. The Block has 3 additional parameters besides the standard t, x, u and flag block
parameters:

* The PROFIBUS DP Slave Address (uint8)
* The number of Input Bytes (uint8)
e The number of Output Bytes (uint8)

An example of the properties window is shown in Figure 9 on the next page, the PROFIBUS DP Slave
Address is set to 40 and we have 4 Input bytes and 4 Output Bytes. Changing these parameters doesn’t
affect the S-function blocks appearance.

To further connect the S-function block, we need to multiplex and demultiplex the In- and Output
signals as shown in Figure 10 on the following page.

For the simplicity of the overall Simulink Model we include all this within a single Subsystem. A
connected example of the Subsystem is shown in Figure 11.

Block Parameters: 5-Function

S-Function

User-definable block. Blocks can be wiritten in C, MATLAB (Level-1), and
Fortran and must conform to S-function standards. The variables t, %, u,
and flag are automatically passed to the S-function by Simulink. You can
specify additional parameters in the 'S-function parameters' field. If the 5-
function block requires additional source files for building generated code,
specify the filenames in the 'S-function modules' field. Enter the filenames

only; do not use extensions or full pathnames, e.g., enter 'src srcl', not
'sre.c srcl.c'.

Parameters

S-function name: |RS485 Edit

S-function parameters: |uintS(4IZ|],uint8[4],uint8[4] |

S-function modules: |RS485_wrapper |

*). Cancel Help Apply

Figure 9: S-function - Block Parameters

(C)—»{Comeert

D
Read for Data Exch P R O F I

DP Slave State

BjU[S
SOFTWARE STACK

Figure 10: PROFIBUS - Software Stack with 4 Input Bytes and 4 Output Bytes

o
=T

D

_—

[In_3_Extra]

[In_4_Extra] - »]

Read for Data Exch

In0

In1

In3

PJR]O][F

BlUJS
VIRTUAL IO-DEVICE,

DP Slave State

I Out 0

Out 1

Out 3

—»@\—»«\\/ [Out_3_Extra]
[—double] < [Out_4_Extra]

Figure 11: Subsystem connected via labels to other Simulink Blocks

2. Small robotic demonstrators

2.1. ISEN Robot controlled by Arduino

2.1.1. Description of the robot
The ISEN robot controlled by Arduino (see Figure 12) is a non-holonom robot using two driving
wheels actuated by DC motors 6V, 240mA. It has 5 IR sensors, the TCRT5000, in charge of obstacle
avoidance and 2 for line following function.

Some buttons, power off/on and for the joystick are mounted in the robot, to control it manually as
well as to select the functioning mode of the robot. It has 3 LED matrices used to show the state of

the robot as well as a LCD screen to write the error messages of the robot. An Arduino mega 2560,

contains all the intelligence of the mobile base.

Figure 12: ISEN robot controlled by Arduino

The schematic of the robot is illustrated by Figure 13.

DIRECTION PWM ENCODER

SIGNAL
|
RicH JOYSTICK
0.0 -
e e ! i
DISPLAY
LINE POWER
AELL 1
INFRARED RIGHL— INFRARED
= FRONT LINE FOLLOWER

Figure 13: Schematic of the Arduino board connected the robot components

2.1.2. Rapid prototyping using MATLAB/Simulink
The algorithms developed in Simulink can be deployed into the target using the appropriate
toolboxes provided by MATLAB/Simulink (see Figure 14).

/ System “
Modelisation

Control

design

Simulation

N R

_ 4

Figure 14: Rapid prototyping schematic using MATLAB/Simulink

The target can be an NXT (Lego Midstorm), an Arduino or a Raspberry Pi.

If the target is an Arduino, the Simulink Support Package for Arduino Hardware needs to be installed.

For that, in MATLAB Command Window, tape supportPackagelnstaller and chose the suited
hardware (see Figure 15).

e ————————— =]
"4\ Adg-On Explorer — EEl %

Annemarie + | Manage Add-Ons

l| Refine by Source
2thWorks 17 252RESULTSFOR Hardware Support Packages x = Remove Al

Refine by Type Hardware Support Packages (252)

: =)
I Simulink Mode 8 L i] -
M ¥ Hardware Support Packages 252 il 4 ;-
CFunci i

!| Refine by Hardware Type L‘,w :
i Audic f + @ Installed a 4
U X MATLAB Support Package Simulink Support Package Legacy MATLAB and MATLAB Support Package
| ey * for Arduino Hardware for Arduino Hardware Simulink Support for for Raspberry Pi Hardware
ata Acquisition Device 4 Arduino
A g Acquire inputs and send outputs on Run models on Arduino boards Acqu

sensorand image data from I

your Raspberry Pi

Figure 15: Hardware support packages for MATLAB/Simulink (version 2012b or more)

The Simulink Support Package is now available on Simulink Library (see Figure 16).

& Iti viewer R Ty = @
|| simulink Support Package for Arduino Hardware/Common
4 simulink st Blocke ol ARDUING ARDUINO ARDUINO ARDUINO ARDUINO ARDUINO ARDUING
Commonly Used Blocks.
Continuous VAVAN NN # i i I2c 12¢
Dashboard Pind. DACO Pin2 Pin & Ping Slave 0x61 Slave 0x61
g‘m"‘mu“‘es Analog Input. Analog Output Continuous Servo Write Digital Input Digital Output 12C Read 12C Write
iscrete
Logic and Bit Operations ARDUINO| ARDUNG ARDUINO ARDUINO ARDUINO. ARDUINO.
Lookup Tables 1 o—2x O==0 sPI £
Math Operations. Status
Model Verification Pin 5 Port 0 Port 0 SS pin 10 Pin 2 Pin 9
Model-Wide Utilities PWM Serial Receive Serial Transmit SPI WriteRead Standard Servo Read Standard Servo Write

Ports & Subsystems
signal Attributes
signal Routing
Sinks
Sources
User-Defined Functions
> Additional Math & Discrete
Control System Toolbox
b HDL Coder
Simulink 3D Animation
Simulink Coder
> Asynchronous
Custom Code
S-Function Target
simulink Control Design
Linear Analysis Plots
Model Verification
Simulink Extras
Additional Discrete
Additional Linear
Additional Lookup Tables
Additional Sinks
Flip Flops
Linearization

(=

m

S

Simulink Support Package for Arduino Hardware
Common
Ethernet Shield
Utilities
Wifi Shield

4 System Identification Toolbox
Estimators
Mt

Figure 16: Simulink library browser with Simulink support packages for Arduino Hardware

Once the package for Arduino is installed and ready to use in Simulink, the Arduino board can be
connected to the computer using the USB cable. If the computer cannot automatically detect the board
driver, update the board driver manually (see Figure 17). To do that, Open Windows Device Manager
and locate the board either in Other Devices or in COM Ports. Right-click on the board and select
'Update Driver Software...' Next, select 'Browse my computer for driver software'. Specify the search
location as

C:\ProgramData\MATLAB\SupportPackages\R2016b\3P.instrset\arduinoide.instrset\arduino-
1.6.7\drivers and click 'Next'.

T e e e
m 44 « Matériel et audio » Périphériques et imprimantes » v |4 [| Recherch.. P
[FhigH] ccition Affichage outils 2

Ajouter un périphérique Ajouter une imprimante = - 0

writer =
»= »
cen R o s = =
| |
Imprimante Labo SST Microsoft XPS PDFCreator
p -
L __ Propriétés de : Arduino Uno (COMZli_ Lﬂ

4 Périphériques (8)

[Géné,m Matériel

T Adduino Uno (COM21)
-

Fonctions du périphérique

| Nom Type
DSC-RX10 | 5" Arduino Uno (COM21) Ports (COM etL.
ﬁ
PC-SMART-AKO RNBT-AC20

g Détails des fonctions du périphérique
4 Non spécifié(e) (1)

Fabricant: Arduino Srl (www.arduino.org)

Emplacement : Port_#0001.Hub_#0004
(>
Etat Ce périphérique fonctionne correctement
j

Arduino Uno
(com21)

=] Arduino Uno (COM21)

Figure 17: Manual update of the Arduino board driver

Once the Simulink algorithm is ready to be deployed in the target, Open the Configuration
parameters window from Tools = Run on Target Hardware = Options and select the
Arduino board model (for example Arduino Due, see Figure 18).

‘& Configuration Parameters: led_allumage/Configuration (Active)

[]=] = |

* Commonly Used Parameters | = All Parameters |

»

> Diagnostics
Hardware Implementation
Model Referencing
Simulation Target

Hardware board settings

Target Hardware Resources

Groups
Build options
Host-board connection £
Overrun detection
Analog input channel pro...
Serial port properties
SPI properties

Etharnat ehiald nranartiae

Device type: |ARM Cortex

Select: Hardware board: IArduinu Due 'l
Solver
Data Import/Export Device vendor: ARM Compatible
Optimization » Device details

Build action: |Build, load and run ~

Figure 18: Choice of the hardware Arduino board model

The Simulink algorithm is now ready to be deployed on the target.

2.1.3. Robot control algorithms

m

All the algorithms described in the previous chapter are implemented into the robot thanks to Rapid
Prototyping using MATLAB/Simulink. The robot could also be controlled by a joystick using the
buttons mounted in front of it (see Figure 12). Using the left or right buttons, it is possible to choose
among the 4 demonstration algorithms: obstacle avoidance, line follower, geometric shape (Straight
Line over a requested distance of travel, triangle, circle, square) or a joystick. The central button is
used to select one of the program. When the button is pressed, the algorithm enters in the selected

function and executes it.

(ON

[UP>0]

[ON_OFF>0]

v
OFF
entry: Enable=0

| [ON_OFF>0
l{oN_OFF>0] LN o

|
'OBSTACLE_IN

JOYSTICK DOWN>0 'OBSTACLE b LINE_FOLLOWER [DOWN>0] GEOMETRIC_SHAPE

entry: Speed1=0 ,[DOWN=0] | entry: Enable=0 J20WN>0] entry: LeftTorque=0 > ! entry: Speed=0

Speed2=0 | [UP>0] RightTorque=0 UP>0] Enable=0

Direction1=0 up>0] H Lir 1

Direction2=0 Direction1=0

Enable=0 Direction2=0

7 [ON_GFF>0] 3 3
| [ON_QFF>0] N OFF>0

[ON_OFF>§] [ON_OF>0]

[ON_OFF>0]
|

LINE_FOLLOWER_IN

[ON_OFF>0]

[
‘GEOMETRIC_SHAPE _I

Figure 19: Overall robot demonstration algorithm implemented in Simulink

2.2. ISEN Robot controlled by Raspberry Pi3

2.2.1. Description of the robot

The robot using a Raspberry Pi3 uses the same motors and sensors than the one using the Arduino.

Figure 20: ISEN robot controlled by Arduino

In the following figures, the general view of pinout of the Raspberry Pi 3 is described.

=
Function
% 1] £ CT -
5 S 12c1s0A JGrio2 [3] [a]svPwr |
&5 EZECS CTEER O [6]cno fernicaid
e crros [7] 8 JuarTo T |
(o [6) [10]uARTO Rx |
Direction tert ([ICIERANN () 12[crio 18 Rt
NS GPIo 27 [13) alno |
Lot GPio 22 [15) (0 CETEER ©iectonmieht
17} (D) G Erobie Rigt
Data matrice | (EIRTIE (A CECHN (O 20[cno]
[spro misofGrios [21] 2 RS ne marche pas e
il | P10 scuk [GPio 11 Ja3) 20 GO EZTIETN fsevice
GND [25] 26]cP10 7 Isprocs1 |
[Reserved 2] 28] Reserved |
Efcrios [29) 3ocno |
= sen CIEEIBED 32]crro 12 I
14393 BRI 13393 o s g P10 13 [33] Balcno] bensors :
(A Y 1\ reryor | (ETEIIET) CITECHNED 36]GP10 16 Jsericso JETRER
= il et [6P10 26 [37] 38]GP10 20 Ispr1 mosi) LB
GND 39) a0l Gp1o 21 Jsprs scux JURIS

Figure 21: Raspberry Pi pinout

17

T
L
LR R R

—J
® o & o s 3 e 0
® & & s s e
~N =0
= = =
<9333 .8
oW o Lo
Pohihn zZZ
aoobv ¢
*® & & & & s 0
* ® o s 0 e
o =
g z:DS b
ND2D2 92955600
mReRgLzikE
"L SELYF
oo =
[
w -
.-e o
.-e wim e
J" W
.e e
ee e o
avers i MO
o - -
- [EUE O e
. N . oo

Figure 23: Connections between the Raspberry Pi and the mobile platform connectors

2.2.2. Rapid prototyping using MATLAB/Simulink

Once the appropriate Simulink Support Package for Raspberry is installed, to be able to run Simulink

models we need to set some final configurations in Simulink settings. As the figures below shows, the

hardware target, the IP address and the raspberry pi login & password need to be set.

& Configuration Parameters: globalfunctionforBigrobotBisTestCamera2/Configuration (Active)

Device type: |ARM Cortex

Commonly Used Parameters = All Parameters
Select: Hardware board: | Raspberry Pi
Solver
Data Import/Export Code Generation system target file: ert.tic
Optimization . d - . bl
Diagnostics Device vendor: |ARM Compatible
Hardware Implementation » Device details
Model Referencing)
Simulation Target Hardware board settings
Code Generation Operating system options
Coverage
HDL Code Generation Base rate task priority: |40
[Detect task overruns
Target Hardware Resources
Groups
Board Parameters
Build options
SPI
External mode

Device Address: |192.168.12.54

OK Cancel Help

Apply

2.2.3. Robot control algorithms

All the algorithms used for the Arduino board are also deployed in the Raspberry Pi3 target.

The main algorithm controls the robot. Using the Joystick, one of the following functions can be

sellected:

Left : “ObstacleAvoidance” is the function which use the infrared sensor at the front of the robot to
detect and avoid obstacle. It changes direction when he detects one obstacle.

Down: “Joystick” is the function which use the joystick to control the robot (Physical or software). It

make the robot go straight forward or back with Up/down.

Right: “GeometricalShape” is the function which draw geometrical shape with the robot, you select

the shape while inside by using the joystick:
- Left: Square

- Down: Circle

- Right: Straight Line

- Up: Triangle

Up: “LineFollower” is the function which use the ground infrared sensors to detect a line and follow
it. You have to put the robot on a black line on a white surface to make it work well, since we have
only digital inputs.

Middle: The button used to go back to the principal menu, and to stop the actual function.

UNE_FOLLOWER _IN

(GeormetrcalShape >N
OtstackeAvousance
vt
{Selecter
|ertry speed=
3 oo™ >
\ J
Terg
. J
(Goyrick N

Figure 24: Overall robot demonstration algorithm for Raspberry Pi 3 target implemented in
Simulink

2.3. Gantry Crane Description

2.3.1. Introduction
The purpose of the gantry crane is to load and unload supplies for the warehouse of a water production

plant. The crane is built using LEGO, LEGO Mindstorms NXT CPUs running code generated from
MATLAB/Simulink, and a Siemens PLC.

1 PLC: Programmable Logic Controller

lnerreg B

25eas Mers Zeeén
INCASE

REMOTE PUMP STATION

STORAGE AND
DISTRIBUTION

-

MAIN WATER SUPPLY STATION

LOGISTIC STATION. AUTOMATION HO
B ISEN & -2/ e w14~y gyt b
R % Ciegm QEES QJIQM VO o mpus Fumie Pz et i

Figure 25: Interregional PROFIcloud Demonstrator

2.3.2. Physical construction of the gantry crane

The gantry crane is built on top of a metal frame that functions as a rail. In the picture below, you can
see the design of the gantry crane.

Trucks with a payload can drive to one of the two truck positions. When a truck is detected, the crane
moves to that position and automatically picks up the payload. The payload is then placed in the
stockroom on the appropriate position.

Crane

Truck positions

Stockroom

Truck entrance

Figure 26: The gantry crane on top of the metal frame

2.3.3. LEGO Mindstorms NXT
NXT Brick

Figure 27: LEGO Mindstorms NXT brick

This is the unit that controls the motors and reads the necessary sensors. The NXT has the ability to
control 3 NXT motors. On the same side is the USB type B port with which the NXT can be programmed.
This USB connection can take up to 12 Mb/s and the NXT also has a Bluetooth module.

The NXT has 4 input ports on which you can connect a range of sensors. The connection is made via a
custom RJ12 connector. Furthermore, the NXT has a speaker, a 100 x 64 pixel LCD screen where up to
8 different lines of data can be displayed.

Processor

Atmel 32-Bit ARM AT91SAM7S256
48 MHz

256 KB FLASH-RAM

64 KB RAM

Co-Processor

Atmel 8-Bit AVR, ATmega48
8 MHz

4 KB FLASH-RAM

512 Byte RAM

Operating System Proprietary
Sensor ports 4,
Analog

Digital: 9600 bit/s (IIC)

Motor ports

3, with encoders

USB Communication

Full speed (12 Mbit/s)

USB Host n/a
SD-Card n/a
Communication with Smart devices | Android

User-Interface

4 Buttons

Display LCD Matrix, monochrome
100 x 64 Pixel

Communication Bluetooth
USB 2.0

Table 1: LEGO NXT Specifications

The NXT is not programmed via LEGO's own supplied software, Simulink Support Package for LEGO
MINDSTORMS NXT Hardware (MathWorks, sd) has been used here. This toolbox allows programming
of the NXT by means of block diagrams in Simulink.

The 4th input port also allows to communicate via RS485. Via a software implementation of the
PROFIBUS DP stack, developed at KU Leuven, it is possible to receive and send PROFIBUS DP messages.

NXT motor

—— AOON
L ;)w (‘

Figure 28: LEGO NXT motor

This is a DC motor that is fed from the NXT by a differential pulse width modulation voltage. This
together with 2 encoder signals, ground and 4.3 V power supply are in one cable. The theoretical speed
is up to 170 rpm. The incremental encoder has a resolution of 1°. This data can be accessed via a
separate block in Simulink. Here you can choose to continue counting, with each sample time or by an
external signal reset. The sample time is also adjustable. This time must be long enough to count
enough pulses over this period at sufficiently low speeds.

To test the motor, a step from 0% to 100% is applied to the motor voltage. As shown below, a delay
of 4 ms is measured.

Stap responsie motor
T T T T T T

Stap [motor spanning
o o
(=] o
T T
L 1

o
FS
T
|

delay: 0.004021

0.2 1

tijd(s)

Figure 29: Step response of the motor voltage

The motors have incremental encoders, so the speed is measured with pulses. Through convolution
the pulses are converted into the speed to measure a discrete step response for the encoders. The
convolution was executed with a window of 14000 samples, which was calculated by the following

. * _3
Period 1stpulse , s — 710 S, 4 = 14000. This will shift a frame of 14000 samples over

formula: - = —
Sample interval 2%1076 s
time. This frame size ensures that when starting 3 pulses are seen and at full speeds 9 pulses. The

measured delay is 10 ms.

30 - — Stap
—snelheid

S

Snelheid (cmfs)
o
I

J delay:0.010884

0.8 1 1.2 1.4 1.6 1.8
tijd(s)

Figure 30: Step response of the incremental encoders

Use of LEGO Mindstorms NXT
There are four NXT bricks built into the gantry crane, each one has its own purposes. The location
and functions of each NXT are displayed in the schematic below.

NXT 4

NXT 2
NXT 3
NXT | Function Sensors and motors
1 Detects the trucks Two ultrasonic sensors and one limit switch
End of rail detection
2 Moves the arm, the cabby | Three motors and one limit switch
Controls the gripper
3 Moves the left leg One motor and one limit switch
End of bridge detection
4 Moves the left leg One motor and one limit switch
End of bridge detection

Figure 31 and Table 2: a schematic overview of the functions of each NXT.

2.3.4. Automation of the gantry crane
Controller

The controller used for the automation of the gantry crane is a Siemens PLC, more specific, a CPU
315F-2 PN/DP.

SIEMENS

Device name: cpu315f122
IP-address: 192.168.0.122

Figure 32: Siemens CPU 315F-2 PN/DP

The PLC program controls the crane. In manual mode, the crane is controlled by switches connected
to the digital inputs of the PLC. The automatic mode still needs to be designed, but the idea is that the
crane automatically loads and unloads trucks when they are detected.

Communication between the PLC and the NXT bricks

The PLC communicates with the NXT bricks using PROFIBUS. The NXT bricks have a RS485 compatible
port and thanks to a software implementation of the PROFIBUS DP stack, the NXT bricks are able to
send and receive PROFIBUS DP messages. The NXT bricks can be added as a device in the PLC
programming software using a GSD-file. Once added to the device, the NXT bricks can be used as a
PROFIBUS DP Slave.

PLC 1
CPU 395F-2 PNI...

PROFIBUS_1

NXTO
LEGO Mindstor... 'pm

PLC_1

MXT1
LEGO Mindstor... gy

PLC 1

NXT2
LEGO Mindstor... gy

PLC 1

NXT3
LEGO Mindstor... gy

PLC 1

Figure 33: PROFIBUS connection between the PLC (Figure 32) and the NXT bricks

NXT Program

Since the NXT bricks are added to the PLC program as PROFIBUS DP Slaves, the logic to control the
motors and read in the sensors must be added to NXT bricks themselves. They are programmed using
code generation by MATLAB/Simulink. This is possible by using the “Simulink Support Package for LEGO

MINDSTORMS NXT Hardware”.

Simulink must be configured to be able to generate the code and deploy it on the NXTs. The settings

are available through “Tools” — “Run on target hardware” — “Options”.

Settings:

e Hardware board: LEGO MINDSTORMS NXT

e Connection type: USB connection

Select:
Solver
Data Import/Export
Optimization
Diagnostics
Hardware Implementation
Model Referencing
Simulation Target
Code Generation
Coverage
Simscape
Simscape Multibody 1G
Simscape Multibody

To generate and deploy the code to the NXTs, “External” must be selected in “Real-Time Simulation”
(1). When “Deploy to hardware” (2) is clicked, the program is sent to the NXTs.

Hardware board: LEGO MINDSTORMS NXT

Code Generation system target file: realtime.tlc

Device vendor: ARM Compatible
» Device details
Hardware board settings
Host to target hardware connection

Connection type: USB connection

Signal monitoring and parameter tuning

Set host COM port: | Automatically

Figure 10: Simulink settings for programming the NXTs

® = - m]

Device type: | ARM 7

External |

- (:..:)v

B

Figure 34: Deploying Simulink to the NXTs

4

When the program is called for the first time every actuator value and internal value are put at 0. Just after the crane initializes itself: the arm on the top, the
mobile part on the right part of the bridge and the crane at the beginning of the rail. It initializes on the same internal variable required for the software part.
After that the PLC waits for the first truck detection to begin to move. Each movement of the crane is calculated with the encoder values and implemented to
never touch the limit switch.

A speed controller is used to be able to regulate the speed. An acceleration limitation is used to have smooth velocity changes, so the crane can stay balanced.
A saturation limits the voltage applied to the motor to don’t apply more voltage than the brick can apply on the motor. And a security is implemented to apply
0 on the motor when the brick is not connected to the PLC.

rpm_setpoint

encoder

inverter

| up
error]
L>E>>Io

Acceleration limiter

V|1

Ha

Kp

Ki

Tk (z+1/
2z

Data Type Conversiond

Windowed
Integrator

“lanD | » OR jDiscrete-Time

0

Consta

nt

1

H>0 ™

Lp{==0 Switch
- Integrator
Logical o"og'ial 1
» ==0 Operator perator
Compare
To Zero1
force_reset

»(2)

—D{SIS

Windowed
Integrator

rpm conversion

motor_rpm

Figure 35: Screenshot of the speed controller

Saturation

&P

motor_voltage

A position controller is also used to determine the position of the crane and deduce the speed required to finish the move. As before a saturation is used to
limit the speed and don’t have too much voltage applied on the motor. The speed delivering is proportional to the distance between the reference position
and the actual one.

@ ol
vim[1E-3ms] =

?

DN e

@ 1E-4 '-'Lf?\ 1E4 #}in Out o a_lim —= motor_power
s_sot <l m Y el m o b n - From Swi Saturation
o Pomod [fleamn 7 pls
- = Out = u ¥
| I—. : ¥ o /] v_final molor_power
£ [1E-4 m] Pi-Controller! w| et 'l} |'
s WVelocity limiter Acceleration limiter
Pl-Controller
(€D
v
force_reset Goto

Figure 36: Screenshot of the position controller

The estimation of the actual distance is done with the value of the encoder and a gain.

0

From21 » 4
I efE4m] |

J12"3.2{10"360'100 »
z Gotod
Z Switch

Unit Delay2 Gain
LEGOD
KTs
Lo [—>{double} VIEAms | 21 —< i |
Port B Discrete-Time Gata?
Encoder Integrator

Figure 37: Calculation of the position

Aside from controlling the motors, the sensor values are also read by the NXT. The sensor values are
used in the NXT to control the motors, but are also sent to the PLC.

Like explained earlier, the PROFIBUS DP Stack is used inside the NXT bricks, so it is able to send and
receive PROFIBUS DP messages.

Read for Data Exch DP Slave State

oul [DP_Slave_State]

[} <ot |
s N P IR [O]F] | &

[Encoder_B) In1 B U S Out 1 double [Req_Motor_Angle_B]
|. VIRTUAL 10-DEVICE,

> [Out_3_Extra]

[In_4_Extra) e »{In3 Out3

Figure 38: Subsystem connected via labels to other Simulink Blocks

2.3.5. Future work
The gantry crane will be part of the large PROFIcloud demonstrator (Output 1).

nerreg H
Zeesn

Universite
delille -
150 ioues

REMOTE PUMP STATION

Coupler
Prafi-Cloud

CROFICLOUD | s ssss s asesss s
caupler

N
STORAGE AND

DISTRIBUTION
Gantry crane - 4 NXT bricks
code generation from Matlab
[——
= I-Ji-l -‘ i
PrTR T Pl e i
: o ! IS o ¢

Université LOGISTIC STATIGN \3)
| P ce Litte L oo
1 :

. - 7 K e Interreg M
[Tt U LEUvEr IEEP:J 2 ‘_’___jj_c'gwh a MQMIQ {gfﬁ:’ﬂ_‘f‘w eglmpuls - e %ﬂﬁi (DS aandersn 4 ,1,32';954‘“”

Figure 39: Interregional PROFIcloud Demonstrator

2.4. LEGO Vehicle

2.4.1. Introduction
This LEGO vehicle drives on two tables with a combined surface of 2 by 2 meters. It uses LEGO
Mindstorms NXT CPUs running code generated from MATLAB/Simulink. It can be manually controlled
from an Android tablet through a PLC and via a wireless link.

TCP-connection

Figure 40: Schematic of the setup

2.4.2. Physical construction of the LEGO Vehicle
The LEGO vehicle is designed with four caterpillar tracks, each one driven by a motor. By using four
caterpillar tracks, the vehicle is able to rotate around its axis on the spot. It also has four ultrasonic
sensors to make sure the vehicle doesn’t drive off the table.

NXT at the front NXT at the back

Ultrasonic sensors

Caterpillar track NXT motor

Figure 41: The LEGO vehicle

2.4.3. NXT execution speed

Measurement without PROFIBUS communication
With a step size of 1 ms in Simulink, the execution time ranges between 0.904 ms and 1.076 ms, with
an average of 1.000 ms. The range varies 0.172 ms.

nAnnANAnnANAnAnnAnan

08 - 1

minimale tijd:
0.904 ms

06 m

maximale tijd:
1.076 ms

gemiddelde tijd:
1.000 ms

02 1

0.2 1 1 1 1 1 1 1
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

tijd(s)

Figure 42: Execution time of the NXT without PROFIBUS communication

Measurement with PROFIBUS communication
With a step size of 1 ms in Simulink, the execution time ranges between 0.917 ms and 1.071 ms, with
an average of 1.000 ms. The range varies 0.154 ms.

tnnnononnonnonnnnnnnd

08 -1

minimale tjd:
0917 ms

maximale tijd:
1.071 ms

0
gemiddelde tijd:

1.000 ms
02 L -
o— 4 0l o b 1 4 1 4

0.2 L I 1 ! 1 I L
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

tijd(s)

Figure 43: Execution time of the NXT with PROFIBUS communication

The use of the PROFIBUS communication doesn’t influence the performance of the NXT.

Measurement for the fastest execution speed of the NXT

For this measurement, the NXT counts to 200 four times and switches an output each time. Then the
output is switched on and off three times. This is programmed as S-function in C-code (see paragraph
2d) and deployed to the NXT using Simulink.

~200tellen~ 12 ' ' ' ' T

minimale tijd:
33.148 ps 1 . . ok -

maximale tijd:

49,612 us
08 .

gemiddelde tijd:
40.298 ps

- Aan-uit -

minimale tijd;
1.356 s 02

maximale tijd:
2.384 ps

gemiddelde tijd:
1.770 s
——————— 0.2 1 1 1 1 1
0.03255 0.0326 0.03265 0.0327 0.03275 0.0328 0.03285
tijd(s)

Figure 44: Fastest execution time of the NXT

The time needed to count up to 200 ranges between 33.148 us and 49.612 ps, with an average of
40.298 ps. The range varies 1.028 ps.

The time needed to switch the output ranges between 1.356 ps and 2.384 ps, with an average of 1.770
us. The range varies 16.464 ps.

2.4.4. Use of LEGO Mindstorms NXT
Because four motors are used and one NXT brick only supports three motors, there are two NXT bricks
used in this vehicle. One NXT brick is connected to the motors and the ultrasonic sensors at the front,
the other one at the back.

Figure 45: The LEGO vehicle

2.4.5. Automation of the LEGO vehicle

Controller
The controller used for the automation of the LEGO vehicle is a Siemens PLC, more specific, a CPU
1516F-3 PN/DP.

The PLC program will receive commands from the Android tablet and it will send the appropriate
setpoint for each motor to the LEGO vehicle.

Comment

300
“Manuel_
Farward” MOVE MOVE
| I EN — EN — e
WMBS0 HB11 MBS %QB20
ot N ouT1 *Linksvoor® “lnv_5F" M ouTt “Linksachter”
UQB12 %QB21
2 QUT2 "Rechtsvoor” i QUT2 "Rechtsachter
* MNetwork9: ...
Commen
%M30.1
“Manuel_Back" MOVE MOVE
—] —en — EN —
MBS ¥B11 MBS0 %QB20
“lnv_SP* N ouT1 *Linksvoor”® "5 N ouT1 “Linksachter”
UQB12 %QB21
1 QuUT2 "Rechtzvoor” i QU2 “Rechtzachter”

Figure 46: PLC program for driving forward or backwards

2.4.6. Communication between the PLC and the NXT bricks

TCP-connection

The commands from the Android tablet will be send wirelessly over a TCP connection to the PLC. The
device used for this wireless connection is the Phoenix Contact FL WLAN 5100, this is a WLAN-access
point.

Figure 47: Phoenix Contact FL WLAN 5100

PROFIBUS DP
The PLC will send the received commands wirelessly over PROFIBUS DP to the LEGO vehicle. The device
used for the wireless transmission is the Anybus Wireless Bridge — Serial — Bluetooth (Anybus, sd). It

provides a wireless connection over Bluetooth for serial devices with an RS-232/422/485 interface. For
the connection two devices are needed, one at the PLC and one on the LEGO vehicle.

Power supply

Figure 48: Anybus Wireless Bridge — Serial — Bluetooth

The Anybus Wireless Bridge operates with a power supply between 8 and 30 V DC. Since the
batteries of the NXTs only supply 9V when fully charged, a boost or step-up converter has been used,
more specifically a Velleman LM2577. This brings the supply voltage to 12 V. It has been decided to
connect the two batteries in parallel so that the capacity of both drops equally. To eliminate
consumption during inactivity, a switch is provided to switch the boost converter of the supply

voltage.

Velleman LM2577:

- Input voltage: 3.5t0 35V DC
- Output voltage: 5-55V DC

- Max. input current: 3 A

- Constant input current: 2 A

~_

T 9V -

9V

IN+ OUT+

Boost-converter

Velleman LM2577

IN-

OuT-

12v

Anybus Wireless Bridge
- Serial over Buetooth

Figure 49: Connection diagram for the Velleman LM2577 and the Anybus Wireless Bridge

Physical connection
In order to establish the connection between the NXT and the Anybus Wireless bridge, there is no
direct (straight through) connection possible. The I12C communication of the NXTs is converted to
RS485 via MATLAB functions. The communication pins are pin 5 and 6. On the Anybus Wireless
Bridge, the send and receive lines must be connected externally to allow half-duplex communication.

Receive— [1 O
Transmit— |2 O
/ (30

/ |40

/ |50
Receive+ |6 O
/ |70
Transmit+ |8 O
/ |90

Anybus Wireless Bridge — Serial — Bluetooth

Figure 50: Connection diagram for the Anybus Wireless Bridge and the LEGO NXT

2.4.7. NXT Program

Analog
GND
GND

3v
RS485 A
RS485 B

Lego NXT port 4

A PID controller — realised with Simulink generated code — is used to control the motors.

Optimised control parameters:

p 0.8.09 L5
r (0.011+—°'°2°5). % '

0.005
T, = 3. (0.011 + T) .= 0.2025

1 0.005
Tg = > .(0.011 +T> = 0.00675

Motor rechts achter

0

PV_MR

o
SP_MR - +*
Kr K(z-1)
(172)°0.0135 Tez
!

Td Ducrote Derivative

1/(3°0.0135°5)
. KTs (201)
<
< 2(z-1)
L :
Discrete-Time
o AND Integrator

Figure 51: PID controller

MV_MR

Responsie van encoders t.o.v. commando

180 -

160 [~

140 -

-

N

o
T

Snelheid (mm/s)
8
T

80 -
60
40 -
20 FH delay:0.033959
0 1 | 1 Il | 1 1 1
-0.2 0 0.2 0.4 0.6 0.8 1 12
tijd(s)

Figure 52: Step response with the PID controller implemented

Step response results for the PID controller:

e Rise time: 97.84 ms
e QOvershoot: 11%
e Settling time: 348.93 ms.

2.4.8. Futue work
It is kept as an option to integrate a similar mobile vehicle in the crane application.

3. Low-cost hardware connected to industrial networks

3.1. Small robot controlled by PLC and Raspberry

3.1.1. Introduction
The aim of the experiment was to control an open source small robotic arm via an industrial PLC. A
raspberry Pl was used as a bridge between the robot (controlled via GPIO pins) and the PLC (via
Modbus). An additional color camera was used to determine the action to perform. It was then
possible to command the arm to grab, move and drop different blocks depending on their color
detected by the camera. An illustration of the chain of control can be find in Figure 53.

Raspberry via python

Camera

PLC: (pycam + opencv) Robotic arm
Modbus server . Modbus client (MGE0S)
(pymodbus)

PWM via GPIO
(servoblaster)

Figure 53: Controlling a robotic arm via a PLC

3.1.2. Equipments:
- Siemens PLC S7-1200: This was the PLC used for the demonstration. However, any modern PLC can
be used as the experiment do not rely on any Siemens specific component.

- Raspberry Pl: Used as a gateway between the PLC and the robot. Instructions from and to the PLC
comes from an Ethernet RJ 45. The robot is controlled via the GPIO pins and the camera via the CSI
port. The main advantage of the Raspberry Pl is its low cost and the easy integration via python of
several different libraries.

- Mearm (https://shop.mime.co.uk/collections/frontpage/products/mearm-pocket-sized-robot-arm):
A kit for building a robotic arm. The aim of this device is purely educational. Despite that no proper
industrial application would be feasible, this kit has the advantage to easily illustrate a proof of
concept.

- Pi Camera Module (v2) (https://www.raspberrypi.org/products/camera-module-v2/): A Color Bayer
Camera which is attached via a ribbon cable to the CSI port on the Raspberry Pi and on the waist of the
robotic arm.

Figure 54 shows a picture of the global framework, where all equipments are connected together.

https://www.raspberrypi.org/products/camera-module-v2/

Figure 54: Global framework

3.1.3. Protocols and communication

PLC

The connection between the PLC and the Raspberry Pl is based on a Modbus TCP link. This protocol
can easily be found in modern PLCs, A server block is started on the PLC to control the arm. Despite
that holding registers have been used for the prototype, inputs and outputs can also be used. However,
using registers is more adequate to our demonstration as it requires integers to be send. Using input
and output would require binary conversion and wouldn’t bring anything useful for our demonstration.

Different commands can be send to the robotic arm:

- Grab: The arm will grab a piece in front of him.

- Drop: The arm will drop the piece he’s holding in front of him

- Position to move: An integer representing fixed position for the robotic arm

- Move: The arm will move to the position specified in the “Position to move” variable.
From the arm, the PLC received different informations:

- Busy: During activities like grabbing, dropping or moving, the arm signals that it is busy doing a task.
Only when this value is no more activated, the PLC can continue its program.

- Code of color: Represents the code of the detected color of the piece in front of the arm. Depending
on the code, different actions can be chosen by the PLC.

Both the variables “Position to move” and “Code of color” are coded via integers. As holding registers
are transmitted in Modbus protocol as a 2 bytes variables per registers, integers can be directly
transmitted without using a bits to bytes conversion.

Raspberry-Pi

Different Modbus TCP client already exists for several programming language. It can also be easily
coded as its protocol is fairly described and proper documentation exists, contrary to Profinet. This
represents the main reason of using a Modbus protocol with respect to other ones.

In this case, we used the pymodbus package (https://pymodbus.readthedocs.io/en/latest/) which is a
python library implementing a TCP Modbus client. The same data described in the section 3.1.1 from
the PLC were then sent (received) to (from) the PLC. For the sake of simplicity, data were exchanged
for every iteration of the program. As the different motions of the arm last around 500ms, the scanning
frequency was high enough with respect to the demonstration. Clearly, depending upon the
application and the equipment used, one can prefer to have a fixed timer for exchanging the data and
this can easily be done via multithreading (as python allows it quite easily).

The robotic arm is basically controlled by its servos, in our case 4 MG90S controlled via PWM. No
additional high-level layer is used to control the arm and there wasn’t any inverse cinematic used in
our case. The different positions used (pulsations in microseconds) were fixed and recorded offline.
Servos are controlled via a dedicated library (servoblaster) implementing PWM on the GPIO of the
Raspberry Pi. Note that the values of pulsations of the servos can be modified manually using a Xbox
controller connected to the Raspberry Pi and a dedicated python module.

Frames acquired by the camera module are displayed on a 7" touchscreen connected to the DSI port
of the Raspberry Pi and processed using the OpenCV (Open Source Computer Vision) library. The
detection algorithm of the color is quite easy since 5 colors can be detected here (blue, red, green,
yellow and black): the average RGB color of a region of interest is automatically computed a each
iteration of the program (each acquisition of a frame) and the detected color is then given by the color
channel(s) with the maximal value(s), see Figure 55.

https://pymodbus.readthedocs.io/en/latest/

Figure 55 : Image of a block acquired by the camera. The ROI (white rectangle), the average
color (RGB code) and the detected color (blue) are displayed/computed using the OpenCV
library

3.2. Wireless PROFIBUS DP over Bluetooth

3.2.1. Introduction
A brief description of the wireless PROFIBUS DP link, used for the mobile vehicle (paragraph 2.4.2) can
be found in this paragraph.

The code and connections can be found in paragraph 2.3.4.

3.2.2. Device

Figure 56: Anybus Wireless Bridge — Serial — Bluetooth

To transmit PROFIBUS DP wirelessly, the Anybus Wireless Bridge — Serial — Bluetooth (Anybus, sd) can
be used. It provides a wireless connection over Bluetooth for serial devices with an RS-234/422/485
interface. Of course, two of these devices are needed to setup the wireless connection.

3.2.3. Setup
While setting up the PROFIBUS connection in the programming software (e.g. TIA Portal), the wireless
bridge doesn’t need to be added or configured. It is invisible for the PROFIBUS devices in the network.

cpul516-136
CPU 1516F-3 PN...

PROFIBUS_1
MXT_Back MXT_Front
LEGO Mindstor...] @ LEGO Mindstor... H
cpul516-136 cpul516-136

Figure 57: PROFIBUS configuration in TIA Portal

3.2.4. Delay measurement
Of course, a wireless link introduces some delay. This delay can be determined by measuring the
PROFIBUS DP messages on one side and on the other side and calculate the time difference between
the same PROFIBUS DP message. On average, the transmission delay is 14.74 ms, the maximum
measured was 21.7 ms.

PLC

o,

delay: 0.014737

0 1 1 L I L 1 1 1 L]
0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
tijd(s)

Figure 58: Transmission delay over the wireless bridge

3.2.5. Example of PROFIBUS DP messages
Communication between the master (address 76) and both NXT slaves (addresses 41 and 42). Only
the frames from the master to the slaves are shown.

27 05530 SD2 76->42 SRDHIGH Data Exchange 93 00

36 06630 SD2 76->41 SRDHIGH Data Exchange 125 00

32 06790 SD2 76->42 SRDHIGH Data Exchange 125 00

42 0.7905 sD2 76->41 SRDHIGH Data Exchange 93 8080
37 0.8064 SD2 76->42 SRDHIGH Data Exchange 93 7F 7F
48 09180 SD2 76->41 SRDHIGH Data Exchange 125 8080
42 09339 SD2 76->42 SRDHIGH Data Exchange 125 7F 7F
54 1.0430 SD2 76->41 SRDHIGH Data Exchange 93 8080
47 1.0614 SD2 76->42 SRD HIGH Data Exchange 93 7F 7F
60 11714 SD2 6->4 SRD HIGH Data Exchange 125 8080
52 11878 SD2 76->42 SRDHIGH Data Exchange 125 7F 7F
66 1.2989 SD2 76->4 SRD HIGH Data Exchange 93 8080
57 1.3164 SD2 76->42 SRDHIGH Data Exchanae 93 7F 7F

Figure 59: PROFIBUS DP messages

3.2.6. Future work
Further analysis and another application in mobile ISEN robot is planned for end of summer 2018,
during the traineeship of an ISEN student in KU Leuven.

4. Bibliography

Anybus. (n.d.). Anybus Wireless Bridge - Serial - Bluetooth. Retrieved from Anybus - Multi-network
connectivity within Fieldbus and Industrial Ethernet:
https://www.anybus.com/products/wireless-index/anybus-wireless-bridge/detail/anybus-
wireless-bridge---serial---bluetooth

Halloy, H. (2017). M1 Internship Report.

MathWorks. (n.d.). Simulink Support Package for LEGO MINDSTORMS NXT Hardware - File Exchange -
MATLAB Central. Retrieved from MathWorks - Makers of MATLAB and Simulink - MATLAB &
Simulink: https://nl.mathworks.com/MATLABcentral/fileexchange/40311-simulink-support-
package-for-lego-mindstorms-nxt-hardware

Simon Magiar, Mirela Gale(2017). Lowcost mobile robot pilot using integrated design: Rapid
prototyping using MATLAB, Simulink and Stateflow for Arduino. Internship report, ISEN-Lille.

Hugo Carpentier, Mustapha Bouziane, Thomas Tarroza, Edouard Beudaert (2017). Lowcost mobile
robot pilot using integrated design: Rapid prototyping using MATLAB, Simulink and Stateflow
for Raspberry Pi3. M1 Project report, ISEN-Lille.

