
D1.2.3 FPGA based error generator for

PROFIBUS DP 1

D1.2.3 FPGA based error generator

for PROFIBUS

Report on design and test results

PP3 Yncréa-ISEN team

PP2 KU Leuven team

1

2

Report outline:

1 – Objectives of this (sub)Activity

2 – Design

3 – Simulation results

4 – Practical tests results

5 – Results summary

6 – References

D1.2.3 FPGA based error generator for

PROFIBUS DP 2

3

1 – Objectives of this (sub)Activity

• To develop a board able to generate an error in a PROFIBUS system (1) (2) when a

specific (user-configurable) event on the PROFIBUS RS485 physical layer is

detected.

• This will be used for training (e.g. (3) for measurement tools) and also to replicate

potential problems which may be observed on industrial systems. This is very

useful for debugging, assessment of diagnostic tools, etc. (Refer to (5) and to (6)

for an overview of errors in industrial field bus systems in OP ArcelorMittal Gent.)

It is an addition to work on PROFINET load and error generators (D1.2.2&4), as

many industrial systems incorporate a mix of these field bus systems.

• The core of the board is a FPGA for high speed performance and improved

versatility. An older error generator – based on low-cost processor technology –

proved to have a number of limitations (4). Using FPGA (7) technology will remove

these limitiations with regard to speed and flexibility, and represents a very good

use case for Activity 1.2 of INCASE.

• The ISEN and KU Leuven teams joined forces in this work, combining experience

and equipment in these domains. The full design was first done by simulation on

recorded (real) PROFIBUS signals, before porting to the real board and the real

networks. Please also refer to (8).

4

2 – Design

1) The board must « listen and decode » incoming messages : this will be achieved

by FPGA

A PROFIBUS receiver operates as an UART (Universal Asynchrounous Receiver

Transmitter), since PROFIBUS characters in a telegram are coded using this

format.

Coding format for PROFIBUS: 1 start bit, 8 data bit + EVEN parity bit, 1 stop

bit (thus 1 character = 11 bits)

⇒ A UART receiver must be implemented in the FPGA

The bit rate must be configurable (max. speed = 12 Mbps)

2) The board must generate a error when a specific event is found

The type a error will be user-selectable (short-circuit, high or low fixed state,

etc.) : this will be achieved by a FPGA and microcontroller

D1.2.3 FPGA based error generator for

PROFIBUS DP 3

5

System overview

FPGA board
(terasic DE0-nano)

Human Machine

Interface board
(microcontroller)

6

DB9

connector

DB9

connector

A

B

A

B

relay

(normally

open)

relay

(normally

closed)

5 V

relay

(normally

open)

Gnd

relay

(normally

open)
relay

(normally

closed)

RS 485

driver

5 V

3.3 V

FPGA board
(terasic DE0-nano)

microcontroller

3.3 V

LCD display
(4 x 16 characters)

5 V

5 V

level translator

(ADG3308 or equivalent)

2-axis

joystick

optocoupler
trigger

output

power

supply

(7 to 24 V)
SMPS
(BUCK)

5 V

Power

connector
Traco Power

TSR 1-2433 or equivalent

error

generation

(see next

slide)

relays

control

D1.2.3 FPGA based error generator for

PROFIBUS DP 4

7

A BMOS

drivers

opto

couplers

5 V

Gnd

from

FPGA

MOS

drivers

opto

couplers
from

FPGA

Error generation, 1st design:

8

Picture of the board (top):

D1.2.3 FPGA based error generator for

PROFIBUS DP 5

9

Picture of the board (bottom):

FPGA board (Terasic DE0)

10

UART character format for PROFIBUS:

bit time

(1/baudrate)

start

bit

stop

bit

8 or 9

data bits

D0 D7

sampling

time

(simple method)

3 sampling

times + majority detection

(better method

⇒ more robust to noisy environments)

D1.2.3 FPGA based error generator for

PROFIBUS DP 6

11

8

8 7

UART receiver structure in the FPGA

15
ck

logic

sample_shift_register
(stores 16 samples of serial input during 1 Tbit)

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

6 5 4 3 2 1 0

RX_shift_register
(stores 9-bit received dat)

7 6 5 4 3 2 1 0

RX_buffer
(stores received byte, updated at the end of reception)

input

12

Interface is used to load various parameters (i.e.: baudrate, trigger condition, Source or Destination

Address, …)

These parameters are stored in a bank of registers. (8-bit address, 8-bit data)

To load the registers, SPI interface is used (uC is master, FPGA is slave).

A7 A6 A5 A4 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0

SCK

MOSI

SS

address data

Interface between uC (microcontroller) and FPGA

D1.2.3 FPGA based error generator for

PROFIBUS DP 7

13

SPI peripheral has been designed and implemented in the FPGA:

7

15
SCK

logic:

correct address ?

SPI_shift_register

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

6 5 4 3 2 1 0

register
(stores 8-bit received data)

MOSI

SS
load

load_enable

duplicated part
(to store as many parameters as needed)

A7 A6 A5 A4 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0

14

external clock

(50 MHz for practical FPGA board)

system clock :

192 MHz to achieve 16 samples per bit at 12 Mbps

(max. speed for PROFIBUS)

input signal :

for simulation, taken from

measurement file

provided by KUL

(see UART_measurement.txt

available on INCASE Google drive)

configuration input to set the sampling frequency

for compatibility with possible PROFIBUS baudrates

(for the moment, its value must be given by user, but in future, an auto-detection system could be implemented)

PLL

50 →→→→192 MHz

UART receiver

received character

8-bit data + parity bit

flag indicator

(1 clock spike when

valid character has been

received)

3 – Simulation results

Operation has first been checked by simulation using real recorded PROFIBUS signals

D1.2.3 FPGA based error generator for

PROFIBUS DP 8

15

To simulate the receiver (VHDL description file uart_rx.vhd available on INCASE Google Drive) being as close as possible to real

conditions , input signal is extracted from a measurement file provided by KUL. This file is a set of measurement obtained with

an oscilloscope monitoring a PROFIBUS signal.

The receiver being simulated with a digital simulator (ModelSim), a testbench has been written to:

- read analog values from the measurement file,

- convert them to digital values,

- use them as simulation inputs.

The testbench (testbench.vhd) is avalable on INCASE Google Drive.

input signal

for simulation

16

Simulation result to check that the FPGA can correctly decode characters in a PROFIBUS message

10 ms

(baudrate = 1.5 Mbps)

The simulation result shows that the UART receiver implemented in the FPGA can correctly decode the PROFIBUS signal.

Valid telegrams can be read (see detail next slide).

D1.2.3 FPGA based error generator for

PROFIBUS DP 9

17

Simulation result (zoomed)

10 ms

(baudrate = 1.5 Mbps)

PROFIBUS signal

(from measurement)

received character

parity bit

byte received

indicator

one telegram one telegram one telegram

200 µµµµs

18

BASIC RAW TRIGGERS
Possible with Current Simulation

Log FileType Remark Detected at

SD (Start Delimiter / Message type) SD1 SD2 SD3 SD4 or SC First byte YES

SA (Source Address) (Not available in SC) Depends on packet type YES

DA (Destination Address) (Not available in SC) Depends on packet type YES

Framing Error No valid packet (wrong SD, LE, FCS, or ED) At the end of a packet/error NO

Parity Error Parity of UART character incorrect At every byte NO

PDU# (Protocol Data Unit #) (only in SD2, SD3) Depends on packet type YES

SAP (Service Access Point) EXT (bit 7) of DA and SA should by high (only in SD2, SD3) Depends on packet type NO

No SAP EXT (bit 7) of DA and SA should by low (Not available in SC) Depends on packet type YES

DSAP (Destination SAP) If SAP -> Check Destination SAP (PDU1) (only in SD2, SD3) Depends on packet type NO

SSAP (Source SAP) If SAP -> Check Source SAP (PDU2) (only in SD2, SD3) Depends on packet type NO

FC (Frame Counter) Multiple sub triggers: Function code , Request/response, … Depends on packet type YES

LE (Length) Only in SD2 Second byte (third byte) YES

List of useful triggers (defined according to project partners KUL + ISEN) (3) (5) (8) :

Next step: check that a specific event can be detected by the FPGA

D1.2.3 FPGA based error generator for

PROFIBUS DP 10

19

20

o Condition n°1: SD (Start Delimiter)

⇒ to detect SD1, SD2, etc. as Start Delimiter and not as any other character inside the message, it is necessary to

know if bus was active or not before arrival of the specific character.

Bus activity detection can be achieved with a timeout counter (or timer) which will be used to detect a « long » time between

2 received characters, which corresponds to a gap between 2 messages.

« Long » means something as 1.5, or 2, or 3 bit times.

« byte_is_received » flag

« bus_active » flag
active activeidle

timeout counter

byte_is_received = 1

⇒ timer = max value

(synchrounous with system clock)

Gmer ≠ 0

⇒ timer counts down

it is decremented at a

rate = 16 × bit rate,

thus 16 × 11 during one character

(there are 16 sampling clock periods during one bit,

and there are 1 start + 8 data + 1 parity + 1 stop bits for one character)

⇒⇒⇒⇒ to set the timeout at 1.5 character time,

max value must be set to 1.5 × 16 × 11 = 264

timer = 0

⇒⇒⇒⇒ bus state is declared as idle

provided by the UART

receiver function

D1.2.3 FPGA based error generator for

PROFIBUS DP 11

21

Thanks to the « bus active » indicator explained before, trigger condition can be evaluated as follows:

• « receive_flag » signal must be high (it is one system clock spike showing that a valid character has just been received),

• « bus_active » signal must be low (because it will be set on the next system clock edge, but for the moment it is still low),

• « UART_RX » (the byte just received) must be one of the PROFIBUS Start Delimiters (SD1, SD2, SD3, SD4 or SC)

Notice: It was first planned to include in the condition an additional test, to check if the previous received character was an End

Delimiter (ED = 0x16). But there is a special case: if the previous telegram is of type « Token Telegram» (its Start Delimiter is in

this case SD4 = 0xDC), it doesn’t end with ED. So this test has not been included.

receive_flag

UART_RX

timeout timer

receive_flag = 1

⇒⇒⇒⇒

timeout timer

set to its max value

(synchrounous with system clock)

system clock

(192 MHz)

start delimiter

bus_active

trigger_out

output of the

trigger circuit:

Gmeout Gmer ≠ 0 ⇒⇒⇒⇒ it can be stated that bus is active

(receive_flag = 1)

AND

(UART_RX = Start Delimiter)

AND

(bus_active) = 0

⇒⇒⇒⇒

this is the start of a new message

22

Simulation of Start Delimiter Detection (1/3):

Simulation length = 2 ms: overview

clock
PROFIBUS measured signal

flag « byte_is_received »

received data byte
parity bit

FIFO holding the

received characters

(only the 2 most recent

characters shown)

outputs from UART
receiver

flag « trigger condition found »

10 us pulse

(triggered when condition

is found)

PROFIBUS messages:

Start Delimiter found

D1.2.3 FPGA based error generator for

PROFIBUS DP 12

23

Simulation of Start Delimiter Detection (2/3):

Zoomed view focusing on received messages

clock
PROFIBUS measured signal

flag « byte_is_received »

received data byte
parity bit

FIFO holding the

received characters

(only the 2 most recent

characters shown)

outputs from UART
receiver

flag « trigger condition found »

10 us pulse

(triggered when condition

is found)

PROFIBUS message:
DC 3C 3C

PROFIBUS message:
68 04 04 68 1E 3C 7D E7 BE 16

PROFIBUS message:
68 04 04 68 3C 1E 08 00 62 16

Start Delimiters
output pulses
triggered by
« Start Delimiter detection »

24

Simulation of Start Delimiter Detection (3/3):

Zoomed view showing the « bus_active » indicator which is used to detect the start of a new message

clock
PROFIBUS measured signal

flag « byte_is_received »

received data byte

outputs from UART
receiver

flag « trigger condition found »

PROFIBUS messages:

« bus_active » indicator

D1.2.3 FPGA based error generator for

PROFIBUS DP 13

25

o Condition n°2: SA(Source Address)

SA is at a fixed position in the telegram (3rd byte).

⇒ in the Trigger_Condition block, a counter will be needed to store the position of the characters

in a telegram.

As a « bus_active » signal is available, it will be used to reset or start this counter (named « character_rank »).

receive_flag

UART_RX

timeout counter

system clock

(192 MHz)

char. n° 0

bus_active

char. n° 1char. n° N-1char. n° N-2

………….. PROFIBUS message PROFIBUS message …………..

char. n° N

character_rank N-2 N-1 N

receive_flag = 1

AND

« bus_active » = 1

⇒⇒⇒⇒

increment « character_rank »

(synchrounous with system clock)

0

« bus_active » = 0

⇒⇒⇒⇒

« character_rank » = 0

(synchrounous with system clock)

0

0 1 2

receive_flag = 1

AND

« bus_active » = 1

⇒⇒⇒⇒

increment « character_rank »

(synchrounous with system clock)

no change

timeout counter

set to max. value
since receive_flag = 1 « bus_active »

set to 1
since Gmeout_counter ≠ 0

char. n° 2

26

Simulation of character position counting:

Zoomed view showing that the position of a character in a message is correctly evaluated

PROFIBUS message:
DC 3C 3C

PROFIBUS message:
68 04 04 68 1E 3C 5D E7 96 16

PROFIBUS message:
68 04 04 68 3C 1E 08 00 62 16

• received character (top)

• character position in the message (middle)

correctly evaluated by the implemented function ����

• bus activity (bottom)

correctly evaluated by the implemented function ����

D1.2.3 FPGA based error generator for

PROFIBUS DP 14

27

For the condition n°2 (source adress) to be considered TRUE, the following requirements must be fullfilled:

o When character rank is 0, the received character must be one of the valid Start Delimiters :

SD1 (0x10) or SD2 (0x68) or SD3 (0xA2) or SD4 (0xDC).

o If Start Delimiter was SD1, SD3 or SD4, the 3rd byte in the message (position = 2) must be equal to the Source Adress of

interest (8-bit wide).

o If Start Delimiter was SD2, the 6th byte in the message (position = 5) must be equal to the Source Adress of interest (8-bit

wide).

The condition n°2 can thus be found with the following state machine (the advantage of this solution is that it minimizes the FPGA

ressources which are needed: it is not necessary to record the entire message) :

waiting for

START Delimiter

char. rank ≠ 0

OR

UART_RX ≠ SD

START Delimiter

is SD1, SD3, or SD4:

waiting for 3rd byte

START Delimiter

is SD2:

waiting for 6th byte

char. rank = 0

AND

UART_RX = SD1, SD3, or SD4

char. rank ≠ 2

valid

Source Address

char. rank = 2

AND

UART_RX = SA

char. rank = 2

AND

UART_RX ≠ SA

always

char. rank = 0

AND

UART_RX = SD2

char. rank ≠ 5

char. rank = 5

AND

UART_RX ≠ SA

char. rank = 5

AND

UART_RX = SA

28

Simulation of Source Address Detection (1/3):

Source Address value checked for this simulation = 0x3C

Simulation length = 2 ms: overview

clock
PROFIBUS measured signal

flag « byte_is_received »

received data byte

parity bit

outputs from UART
receiver

flag « trigger condition found »

10 us pulse

(triggered when condition

is found)

PROFIBUS messages:

Source Address of interest found

flag « bus_active »

character rank

D1.2.3 FPGA based error generator for

PROFIBUS DP 15

29

Simulation of Source Address Detection (2/3):

Source Address value checked for this simulation = 0x3C
zoomed view focusing on received messages

clock
PROFIBUS measured signal

flag « byte_is_received »

received data byte

parity bit

outputs from UART
receiver

flag « trigger condition found »

10 us pulse

(triggered when condition

is found)

Source Address of interest (0x3C) found

flag « bus_active »

character rank

PROFIBUS message:

DC 3C 3C
PROFIBUS message:

68 04 04 68 1E 3C 5D E7 96 16

PROFIBUS message:

68 04 04 68 3C 1E 08 00 62 16

(Token Telegram,
SA = 0x3C)

(Telegram with variable length,
SA = 0x3C)

(Telegram with variable length,
SA = 0x1E)

30

Simulation of Source Address Detection (3/3):

Source Address value checked for this simulation = 0x3C
zoomed view focusing on received messages

clock
PROFIBUS measured signal

flag « byte_is_received »

received data byte

parity bit

outputs from UART
receiver

flag « trigger condition found »

10 us pulse

(triggered when condition

is found)

Source Address of interest (0x3C) found

flag « bus_active »

character rank

PROFIBUS message:

68 04 04 68 3C 1E 08 00 62 16

(Telegram with variable length,
SA = 0x1E)

PROFIBUS message:

10 05 3C 49 8A 16

(Telegram without data field,
SA = 0x3C)

D1.2.3 FPGA based error generator for

PROFIBUS DP 16

31

Practical test of Trigger Condition Detection (not on a real PB system):

Setup for the test:

PROFIBUS-like messages generated by a microcontroller (8-bit Microchip PIC18F @ 64 MHz)

Messages decoded and analyzed by an ALTERA FPGA (Cyclone IV E @ 192 MHz)

baudrate:

must be a submultiple of 16 MHz for the uC

must be a submiltiple of 12 MHz for the FPGA

⇒⇒⇒⇒ baudrate set to 4 Mbps (highest common submultiple)

32

Practical test of Trigger Condition Detection (1/2):

Trigger condition = Start Delimiter

serial data :

PROFIBUS messages

« byte_is_received » flag :

« bus_is_active » flag :

« Start Delimiter Found » flag :

D1.2.3 FPGA based error generator for

PROFIBUS DP 17

33

Practical test of Trigger Condition Detection (1/2):

Trigger condition = Start Delimiter (zoom)

serial data :

PROFIBUS messages

« byte_is_received » flag :

« bus_is_active » flag :

« Start Delimiter Found » flag :

detection = OK

34

Practical test of Source Address Detection (1/1):

Trigger condition = Source Address = 0x3C (zoom)

serial data :

PROFIBUS message

« byte_is_received » flag :

« bus_is_active » flag :

« Start Delimiter Found » flag :

source address

detection = OK

D1.2.3 FPGA based error generator for

PROFIBUS DP 18

35

4 – Practical tests results

The board has been tested on a real system in Gent (KU Leuven laboratory) on

November 7th and December 7th 2017

KUL: Philippe SAEY, Frederic DEPUYDT, Mathieu TROCH

ISEN: Jean-Marc CAPRON

36

o Test n°1: check correct detection of characters and packets by the FPGA (bit rate = 1.5 Mbps)

PROFIBUS message

PROFIBUS signal

Board under test: output n°1
(one pulse when character
Is detected)

Board under test: output n°2
(high when message
Is on-going, comes back to
0 when no byte has been
detected for 1.5 byte time)

Conclusion:

reading and decoding PB signals @ 1.5 Mbps is

correctly achieved by the FPGA

D1.2.3 FPGA based error generator for

PROFIBUS DP 19

37

o Test n°2: check correct detection of START DELIMITER event by the FPGA (bit rate = 1.5 Mbps)

PROFIBUS message

PROFIBUS signal

Board under test: output n°1
(one pulse when Start
Delimiter is detected)

Board under test: output n°2
(high when message
Is on-going)

Conclusion:

detecting the START DELIMITER @ 1.5 Mbps is

correctly achieved by the FPGA

START DELIMITER

38

o Test n°3: check correct detection of a specific Source Address in a message (bit rate = 1.5 Mbps)

o note: the Source Address position in the message depends on message type ⇒⇒⇒⇒ FPGA must take this into account

when searching for a specific address

PROFIBUS message

PROFIBUS signal

Board under test: output n°1
(one pulse when Start
Delimiter is detected OR a
given Source Address is
Found – here: 3F)

Board under test: output n°2
(high when message
Is on-going)

Conclusion:

detecting a specific SOURCE ADDRESS in a

message @ 1.5 Mbps is correctly achieved by the

FPGA, whatever the type of message

START DELIMITER
SOURCE ADDRESS (different positions for different message types !)

D1.2.3 FPGA based error generator for

PROFIBUS DP 20

39

o Test n°3 (continued): check correct detection of a specific Source Address in a message (bit rate = 1.5 Mbps)

PROFIBUS message

PROFIBUS signal

Board under test: output n°1
(one pulse when Start
Delimiter is detected OR a
given Source Address is
Found – here: 3F)

Board under test: output n°2
(high when message
Is on-going)

Conclusion:

detecting a specific SOURCE ADDRESS in a

message @ 1.5 Mbps is correctly achieved by the

FPGA, whatever the type of message

START DELIMITER
SOURCE ADDRESS

40

o Test n°4 : check that error is applied on the bus when a user-defined event has been found (bit rate = 1.5 Mbps)

Conclusion:

applying a error on the bus @ 1.5 Mbps is

correctly achieved by the board

Event detection being correctly achieved, this information was used to trigger a error on the bus.

A error is a fixed voltage applied on PB lines (A & B), in order to « disturb » the message.

error type is user-selectable: it can be chosen through Human-Machine-Interface to clamp A & B to low or high states

(any combination is feasable)

START DELIMITER

PROFIBUS signals
clamped to fixed voltage

D1.2.3 FPGA based error generator for

PROFIBUS DP 21

41

o Test n°5: check correct detection of characters and packets by the FPGA (bit rate = 12 Mbps)

PROFIBUS message

PROFIBUS signal @ 12 Mbps

Filtered version of the
signal

Conclusion:

at maximum bit rate (12 Mbps) operation is

disturbed by the board connection

42

At maximum speed (12 Mbps), connecting the board to the bus disturbes the signal, which is not a desired

feature.

Adding ferrites to the board for better filtering of oscillations and dissipation of the associated energy has

been tested, but without significant improvement.

However, detection of characters is still correctly achieved by the FPGA at 12 Mbps (see oscilloscope snapshot

on the next slide). But correct operation of the original system could however be disturbed, in the case of

longer cables, larger networks, EMI, etc. .

Board not connected
to the bus
(1.5 Mbps)

Board connected
to the bus
(1.5 Mbps)

Conclusion:

Tests are currently on-going to find a better way

to apply a error to the bus

D1.2.3 FPGA based error generator for

PROFIBUS DP 22

43

However, detection of characters is still correctly achieved by the FPGA at 12 Mbps, even if correct operation

of the original system could be disturbed.

PROFIBUS signal @ 12 Mbps

Board under test: output n°1
(one pulse when character
Is detected)

Board under test: output n°2
(high when message
Is on-going, comes back to
0 when no byte has been
detected for 1.5 byte time)

Conclusion:

reading and decoding PB signals @ 12 Mbps is

correctly achieved by the FPGA, even if the

hardware for error generation must be

redesigned for a better impedance match.

44

5 – Results summary

FPGA implementation

of a PROFIBUS receiver (VHDL development)

Simulation with testbench

from real PB messages record (MODELSIM)

FPGA implementation

of PROFIBUS message decoding

+ event detection (VHDL development)

Board design and fabrication

of the error generator

Practical test @ 1.5 MBps

Practical test @ 12 MBps

Software development of

Human-Machine-Interface (C-code development)

DONE
IMPROVEMENT

PLANNED

The 2nd version of the board is planned to bring less

disturbance to PROFIBUS DP at full speed.

Further work is under D1.2.5, and possibly under

WPC for a paper.

D1.2.3 FPGA based error generator for

PROFIBUS DP 23

45

6 – References

(1) “Decentralization with PROFIBUS-DP”; J. Weigmann, G. Kilian, Publicis MCD Verlag, Erlangen, Duitsland, 2000.

(2) “The New Rapid Way to PROFIBUS-DP”; M. Popp, PROFIBUS Nutzorganisation, Karlruhe, Duitsland, 2003

(3) https://procentec.com/products/profitrace/?content-1 & https://procentec.com/products/combricks/?content-1

(4) “Design of an Arduino based low-cost error generator for PROFIBUS DP”; IEEE Conference on Emerging Technologies and Factory

Automation ETFA 2014, Sep. 16-19, Barcelona (Spain). Philippe Saey, Ward Hauspie, Hendrik Derre, Thomas De Landtsheer,

Annemarie Kokosy, Jos Knockaert.

(5) “PROFIBUS: Theory & Practice, Engineering & Troubleshooting”; F. Depuydt, W. Hauspie, H. Derre, T. De Landtsheer, S. Noppe, M.

Troch, P. Saey.

(6) PROFIBUS troubleshooting a.d.h.v permanente logging met COMbricks in ArcelorMittal Gent. Masterproef Jens Mortier, KU

Leuven.

(7) Methodology for FPGA-based system design. Jean-Marc Capron, ISEN-Lille (TTM day INCASE, 17/02/2017)

(8) INCASE meeting reports, Technical Days, Internal Conference.

